3.128 \(\int \frac{\sec ^3(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx\)

Optimal. Leaf size=105 \[ -\frac{7 \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{2 \tan (c+d x)}{a d \sqrt{a \sec (c+d x)+a}}+\frac{\tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

[Out]

(-7*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) + Tan[c + d*x]/(2
*d*(a + a*Sec[c + d*x])^(3/2)) + (2*Tan[c + d*x])/(a*d*Sqrt[a + a*Sec[c + d*x]])

________________________________________________________________________________________

Rubi [A]  time = 0.168173, antiderivative size = 105, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 4, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.174, Rules used = {3799, 4001, 3795, 203} \[ -\frac{7 \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{2 \tan (c+d x)}{a d \sqrt{a \sec (c+d x)+a}}+\frac{\tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \]

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^3/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(-7*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) + Tan[c + d*x]/(2
*d*(a + a*Sec[c + d*x])^(3/2)) + (2*Tan[c + d*x])/(a*d*Sqrt[a + a*Sec[c + d*x]])

Rule 3799

Int[csc[(e_.) + (f_.)*(x_)]^3*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(b*Cot[e + f*x]*(
a + b*Csc[e + f*x])^m)/(a*f*(2*m + 1)), x] - Dist[1/(a^2*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m
+ 1)*(a*m - b*(2*m + 1)*Csc[e + f*x]), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)
]

Rule 4001

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> -Simp[(B*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*B*m + A*b*(m + 1))/(b*(
m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B,
0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] &&  !LtQ[m, -2^(-1)]

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sec ^3(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx &=\frac{\tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac{\int \frac{\sec (c+d x) \left (-\frac{3 a}{2}+2 a \sec (c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx}{2 a^2}\\ &=\frac{\tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac{2 \tan (c+d x)}{a d \sqrt{a+a \sec (c+d x)}}-\frac{7 \int \frac{\sec (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx}{4 a}\\ &=\frac{\tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac{2 \tan (c+d x)}{a d \sqrt{a+a \sec (c+d x)}}+\frac{7 \operatorname{Subst}\left (\int \frac{1}{2 a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{2 a d}\\ &=-\frac{7 \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right )}{2 \sqrt{2} a^{3/2} d}+\frac{\tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac{2 \tan (c+d x)}{a d \sqrt{a+a \sec (c+d x)}}\\ \end{align*}

Mathematica [A]  time = 0.306255, size = 104, normalized size = 0.99 \[ \frac{\tan (c+d x) \left (2 \sqrt{1-\sec (c+d x)} (4 \sec (c+d x)+5)-7 \sqrt{2} (\sec (c+d x)+1) \tanh ^{-1}\left (\frac{\sqrt{1-\sec (c+d x)}}{\sqrt{2}}\right )\right )}{4 d \sqrt{1-\sec (c+d x)} (a (\sec (c+d x)+1))^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^3/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

((-7*Sqrt[2]*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]]*(1 + Sec[c + d*x]) + 2*Sqrt[1 - Sec[c + d*x]]*(5 + 4*Sec[
c + d*x]))*Tan[c + d*x])/(4*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c + d*x]))^(3/2))

________________________________________________________________________________________

Maple [B]  time = 0.152, size = 225, normalized size = 2.1 \begin{align*}{\frac{1}{4\,d{a}^{2} \left ( \sin \left ( dx+c \right ) \right ) ^{3}}\sqrt{{\frac{a \left ( \cos \left ( dx+c \right ) +1 \right ) }{\cos \left ( dx+c \right ) }}} \left ( 7\,\sin \left ( dx+c \right ) \ln \left ({\frac{1}{\sin \left ( dx+c \right ) } \left ( \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -\cos \left ( dx+c \right ) +1 \right ) } \right ) \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}} \left ( \cos \left ( dx+c \right ) \right ) ^{2}-7\,\ln \left ({\frac{1}{\sin \left ( dx+c \right ) } \left ( \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) -\cos \left ( dx+c \right ) +1 \right ) } \right ) \sqrt{-2\,{\frac{\cos \left ( dx+c \right ) }{\cos \left ( dx+c \right ) +1}}}\sin \left ( dx+c \right ) +10\, \left ( \cos \left ( dx+c \right ) \right ) ^{3}-12\, \left ( \cos \left ( dx+c \right ) \right ) ^{2}-6\,\cos \left ( dx+c \right ) +8 \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^3/(a+a*sec(d*x+c))^(3/2),x)

[Out]

1/4/d/a^2*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2)*(7*sin(d*x+c)*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c
)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*cos(d*x+c)^2-7*ln(((-2*cos(d*x+c)/(cos(d*x+c)
+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)+10*cos(d*x+c)^
3-12*cos(d*x+c)^2-6*cos(d*x+c)+8)/sin(d*x+c)^3

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec \left (d x + c\right )^{3}}{{\left (a \sec \left (d x + c\right ) + a\right )}^{\frac{3}{2}}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^3/(a*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [A]  time = 2.3264, size = 895, normalized size = 8.52 \begin{align*} \left [-\frac{7 \, \sqrt{2}{\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{-a} \log \left (-\frac{2 \, \sqrt{2} \sqrt{-a} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) - 3 \, a \cos \left (d x + c\right )^{2} - 2 \, a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) - 4 \, \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}{\left (5 \, \cos \left (d x + c\right ) + 4\right )} \sin \left (d x + c\right )}{8 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, \frac{7 \, \sqrt{2}{\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt{a} \arctan \left (\frac{\sqrt{2} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt{a} \sin \left (d x + c\right )}\right ) + 2 \, \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}}{\left (5 \, \cos \left (d x + c\right ) + 4\right )} \sin \left (d x + c\right )}{4 \,{\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[-1/8*(7*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(-a)*log(-(2*sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c)
+ a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) - 3*a*cos(d*x + c)^2 - 2*a*cos(d*x + c) + a)/(cos(d*x + c)^2 + 2*
cos(d*x + c) + 1)) - 4*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*(5*cos(d*x + c) + 4)*sin(d*x + c))/(a^2*d*cos(d
*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d), 1/4*(7*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*arctan
(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) + 2*sqrt((a*cos(d*x + c)
 + a)/cos(d*x + c))*(5*cos(d*x + c) + 4)*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\sec ^{3}{\left (c + d x \right )}}{\left (a \left (\sec{\left (c + d x \right )} + 1\right )\right )^{\frac{3}{2}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**3/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral(sec(c + d*x)**3/(a*(sec(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [A]  time = 10.3394, size = 215, normalized size = 2.05 \begin{align*} \frac{\frac{{\left (\frac{\sqrt{2} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}}{a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} - \frac{9 \, \sqrt{2}}{a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{\sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}} - \frac{7 \, \sqrt{2} \log \left ({\left | -\sqrt{-a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt{-a} a \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}}{4 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^3/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

1/4*((sqrt(2)*tan(1/2*d*x + 1/2*c)^2/(a*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)) - 9*sqrt(2)/(a*sgn(tan(1/2*d*x + 1/2*
c)^2 - 1)))*tan(1/2*d*x + 1/2*c)/sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a) - 7*sqrt(2)*log(abs(-sqrt(-a)*tan(1/2*d*x
 + 1/2*c) + sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/(sqrt(-a)*a*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)))/d